If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2=48
We move all terms to the left:
p^2-(48)=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $
| 2x4^x-3=16^x÷8^1-x | | 4x+12=5+x | | 4x+5=15x+2x | | 16^3x-x=1 | | 8x+40=3x+15 | | 5^m=625 | | 3x-13/7=-1 | | x+4÷3=5 | | 12=8=4y | | -6-2x=0 | | 3=5v=-27 | | 3=5v=27 | | 5x-9=-84 | | 9v+9=6(v+5) | | 5t+3+2t-6t=4+12t | | 3,2t-4,9t^2+3,45=0 | | 20/4=1/n | | 4x+17=163 | | 4x17=163 | | 3a-1÷5=a÷5+27÷5 | | 4b^2+14b+16=0 | | 5x+39=3/4x | | 6x+x=29 | | 80x+50=32550 | | 6x-3/3=2x-4/5=-21 | | n/2=7/8 | | 4x-4/3=-4 | | 4n/4=24/8 | | 13x+14=4x+167 | | 30x+100=20x+220 | | 30x+140=20x+350 | | 10x=12=4x-6 |